Homebrewing - Home Brewers Blog

West Coast Brewer Home Brewing Blog

Tag: yeast (page 1 of 2)

West Coast Brewer NEIPA Hazy IPA Version 2

West Coast Brewer NEIPA – Hazy IPA Recipe v2.0

We just finished brewing our most recent batch of beer!  For this one, we took another crack at a Hazy IPA. Hazy IPA’s have quickly become one of my very favorite styles to both brew and consume.  The combination of tropical hops and fruity esters from the yeast end up creating a hoppy fruitiness that is difficult to resists!

Just a word of caution, if you choose to brew this recipe, beware that there is a good deal of oats and wheat in it and depending on your system it could cause sparge and recirculation issues.  I personally experienced that with this batch.  It may be wise to add some rice hulls to the mash to help prevent it from sticking. It did finally clear, but it was a struggle for a little while. I ended up adding an extra gallon of water to the mash to help clear it.

Ss BrewTech Stainless Steel Conical Homebrewing Fermenter

Ss BrewTech Stainless Steel Conical Homebrewing Fermenter

Sanitizing the stainless steel Ss BrewTech conical fermenter. I ended up chopping the feet off of mine and using a flat top so that it fits inside my cest freezer for fermentation. I also traded out the racking arm for More Beer’s Ultimate Racking Arm solution. I am super happy with it and also have a 14 gallon version.

 

Here is the post boil whirlpool after I added the additional hops in at flame out!  I let it whirlpool for approximately 15 minutes. I added a weldless stainless steel whirlpool arm from More Beer and it has worked out really well for me.  It was easy to install into my kettle and has been completely leek free!

 

The TrubTrapper Post Boil

The Trub Trapper Post Boil

This is probably my best recent purchase! The Trub Trapper did an incredible job on this batch and really exceeds expectations when I use it in conjunction with a whirlpool process.  It captures 90%+ of the hops and trub so that I can draw in clean wort to my fermentor with out worry!

Here is my West Coast Brewer Hazy IPA v2.0 beer recipe!

If you brew it, please let me know how it turns out for you!

Beer Name: West Coast Brewer Hazy IPA v2.0Beer Style:New England IPA / NEIPA / Hazy IPA / Vermont Style IPARecipe Type:All GrainBatch Size:5 GallonsMash Type:Infusion
(60 Min) 150F
(10 Min) 169F Mash Out
1 tsp Calcium Chloride
1/2 tsp Gypsum / Calcium SulfateGrain Bill:12 LBS Pale 2 Row US
2 LBS Flaked Oats
2 LBS Flaked Wheat
1 LBS Flaked Malt
1 LBS Honey MaltHops:1 oz Mosaic – 60 Minutes
2 oz Citra – 15 Minutes
1 oz Mandarina Bavaria – 5 Minutes
1 oz Citra – 0 Minutes – Whirlpool for 15 Minutes
1 oz Mosaic – 0 Minutes – Whirlpool for 15 MinutesOther:DO NOT USE A CLARIFIERYeast:London Ale III Wyeast #1318Fermentation:2 Week Primary @ 72F
– I ferment this at a slightly higher that usual temperature to increased ester production
and to create a more active fermentation)
On day 3 of active fermentation make the following hop additions
2 oz Mandarina Bavaria
On day 7 of fermentation make the following hop additions
2 oz Mandarina Bavaria
2 oz Citra
Once fermentation has completed or on day 10, cold crash and transfer to keg or bottle. 

Reusing beer yeast and how to harvest and clean your beer yeast.

Reusing and harvesting beer yeast

Reusing and harvesting beer yeast

While cleaning out your fermenter have you ever wondered if you could reuse the yeast that has collected on the bottom?  The answer is yes, you certainly can!  You can actually often reuses your yeast 4 or 5 times with out the likelihood of having any ill effects from mutations or high quantities of alternate yeast strains impacting the flavor of your beer.  Yeast isn’t cheap at around $7-$10 for a vial of the good stuff, so you might as well get your moneys worth!

 

Here are some basic things to consider when reusing your home brewing yeast.  

It is best to reuse the yeast as soon as possible.  You will probably want to consider discarding it after approximately 6 months.  If you are pitching the yeast more than 30 days after harvesting it from your fermenter, I would recommend creating a starter with it to help insure viability.

 

Only reuse your yeast 4-5 times.  Each time you reuse the yeast, mutations will occur and the probability of alternate yeast strains impacting the flavor of your beer will increase.

 

Do not reuse the yeast if the ABV of the beer that you harvested it from exceeds 6.5%.  High alcohol levels weaken and destroy your yeast.

 

Do not reuse yeast from a heavily hopped beer.  Like with alcohol, an over abundance of hops (from a dry hopped IPA for instance) will diminish the longevity and potency of your yeast.

 

Do your best to avoid harvesting the trub along with your yeast.  This is most easy accomplished via a conical fermenter. It is also possible transfer the yeast slurry and then rinse and decant your yeast with sanitized water to separate it from the trub.

 

Harvesting Beer Yeast

Harvesting Beer Yeast

 

Yeast should be stored at approximately 36 F in a sanitized vessel.  Keep in mind that even at that temperature the yeast may still be active and can create CO2.  So beware as your container may explode if too much fermentable sugar remained behind in your harvested yeast solution and the vessel is unable to vent the pressure.

 

If you are interested in purchasing a conical fermenter or yeast harvesting cylinder; many options can be found here:

Conical Fermenters and Yeast Harvesting

Active Beer Yeast Video – 400x Magnification

The following video shows American Wheat Ale yeast in active fermentation. The yeast was taken from the krausen of a beer that had been fermenting for a week. If you expand the video to fullscreen and look closely at the 400x magnification segment of the video, you will see yeast activity where small black specs are moving around inside of the yeast cell walls.

The video continues on to show the yeast at 100x and 40x magnification to give you an idea of just how many yeast cells there are on such a small glass slide. An active 5 gallon beer fermentation should have well over 10 billion active yeast cells during primary fermentation.

 

Video showing active yeast during fermentation:

 

Here is a still shot of the yeast at 400x magnification:

Active Beer Yeast at 400x Magnification

Active beer yeast at 400x magnification shown under a microscope.

Yeast

Brewing yeast strains are unicellular fungi that convert simple sugars into approximately equal parts of alcohol and carbon dioxide during the fermentation process. There are two main types of beer yeast varieties: saccharomyces cerevisiae, which is a top fermenting ale yeast, and saccharomyces pastorianusis, a bottom fermenting lager yeast.

 

 

 

A wide selection of home brewing ale and lager yeast can be found here:

Home Brewing Yeast

 

 

Below is an image of a fermenting Flanders Red Ale style beer in two glass carboys with a flask of yeast in front of them:

Yeast and Fermenting Beer

Yeast and Fermenting Beer

Top Fermentation

Top fermentation, or top fermenting, describes the tendency of ale yeast cells to conduct the majority of fermentation on the surface of the fermentation vessel as opposed to the bottom, as is common with lager yeast. Top fermenting ale yeast is typically fermented at a temperature range between 65° F and 75° F; the lower the temperature, the slower the fermentation is carried out.

 

Excessive fermentation temperatures have been known to generate off flavors in beer, and that is why a temperature range of 65° F to 75° F is typically recommended. When a top fermenting ale is most active, a thick head of foam known as a krausen forms on the top of the fermentation vessel and will subside as the fermentation draws to an end. The length of fermentation is dependent on the health of the yeast, the original gravity of the wort, the temperature of the fermentation and the amount of yeast pitched, but typically takes anywhere from one week to three weeks for the majority of fermentation activity to complete.  A secondary fermentation is oftentimes conducted so that any remaining fermentable sugars can be converted to alcohol, and the beer can condition and allow the yeast to precipitate to the bottom of the fermenter in preparation for bottling or kegging.

 

Below is a photo of a top fermenting ale that was recently transferred to a secondary fermentation carboy.

Top Fermenting Ale - Beer

Top Fermenting Ale – Beer

Sediment

Beer sediment is the collection of solids that fall out suspension of a fermenting or conditioning beer. Sediment is mostly comprised of yeast, grain solids, hop solids, and adjunct solids. As the beer ferments or conditions, the dense solids fall and settle to the floor of a fermenter, conditioning vessel, or bottle, in the case of a bottle conditioned beer. The sediment is typically discarded, but if the yeast is still healthy, it may be recycled from the sediment to be used to ferment future beers.

Pitching

Pitching or yeast pitching is the term used for when a brewer adds yeast to the cooled wort to begin the fermentation process. Yeast should be pitched to the wort as quickly as possible to diminish the possibility of wild yeast strains or bacteria taking control of the sweet wort before your selected yeast has the opportunity to. Additionally, your pitched yeast should be as close to the same temperature as the wort that you are adding it to in order to avoid shocking the yeast and to help the yeast acclimate as quickly as possible and lower yeast lag time. It is critical that your wort is in an appropriate temperature range for the yeast to be able to survive and thrive; for most ales that temperature range is between 65° and 80° F for pitching, but you should always consult your yeast’s packing for the specific temperature range of the variety you are using.

 

Cooled wort being aerated, just prior to having the yeast pitched.

Yeast Pitching and Aeration just prior to fermentation

Yeast pitching and aeration just prior to fermentation.

Lag Phase

The lag phase is the period of time in which yeast adapts to the new fermentation environment and undergoes significant reproduction.  Depending on the state of the yeast (reactivated, chilled, or dried), health of the yeast cells, variety of yeast, amount of dissolved oxygen available in the wort, temperature of the wort, and amount of available fermentable sugars, the lag phase may last anywhere from 2 to 24 hours. The lag phase begins as soon as the yeast is introduced into the wort and very little CO2 or alcohol is produced while it is active.

 

The shorter the lag time, the better, so that the desired yeast has a chance to take control of the wort before unwanted bacteria or wild yeast strains do.There are several ways to decrease your lag time, including:

  • Creating a yeast starter
  • Rehydrating dried yeast
  • Keeping your yeast and wort at the correct temperature when pitching the yeast and continuing to monitor temperature until the lag phase has ended.
  • Well-aerating your wort so that the yeast will have enough oxygen available.
  • Pitching enough yeast for the gravity of your wort.

 

 

Phenols

Beer phenols are chemical compounds, similar in structure to alcohols, that are generated by yeast during fermentation. In certain styles of beer, such as Bavarian hefeweizens and wit beers, phenol flavors such as bubblegum, banana and clove are considered desirable; but in other styles they are considered to be an off flavor or flaw. Causes of unwanted phenols include wild yeast or bacteria, chlorine, and excess sanitizer.

Bright Beer

Bright beer is beer that has fully clarified and is free from haze, nearly all particulates, and yeast has fallen out of suspension.

Flocculation

Flocculation refers to a yeast strain’s tendency to clump together and drop out or fall out of suspension to the bottom of the fermenter or holding vessel. As yeast flocculates, the beer begins to clarify. Some yeast strains tend to have high flocculation, such as Wyeast Scottish – 1728, while other strains like Wyeast American Wheat – 1010 have very low flocculation. The physical appearance of the yeast cell plays a big part in its flocculation level.

It is important to choose a yeast with an appropriate flocculation profile when designing a beer; for instance you would not pair a Belgian Wit wort with a high flocculation yeast, as you want some of the yeast to stay in suspension in the finished beer.

Airlock

An airlock or fermentation lock is a single direction sanitary valve used during fermentation. It allows the large quantities of carbon dioxide being produced by the yeast to escape while not permitting outside air\oxygen or contaminants to enter the fermentation chamber. This creates a sanitary seal on the fermenter and helps prevent the oxidization of the fermenting beer.

The airlock or fermentation lock typically contains a sanitizer to help maintain the integrity of the fermenter. Airlocks tend to be made of clear plastic or glass so that the CO2 bubbles passing through them can be monitored as a way of gauging how active the fermentation process is.

 

 

Below is an example of a three piece airlock, S shaped airlock, and a blowoff tube.

Example of different types of Airlocks \ Fermentation Locks and a  Blow Off Tube
Example of different types of airlocks/fermentation locks and a blowoff tube.
« Older posts
%d bloggers like this: